Depolarization-Induced Calcium-Independent Synaptic Vesicle Exo- and Endocytosis at Frog Motor Nerve Terminals

Cover Page

Abstract


The transmitter release and synaptic vesicle exo- and endocytosis induced by constant current depolarization of nerve terminals were studied by microelectode extracellular recording of miniature endplate currents and fluorescent microscopy (FM 1-43 styryl dye). Depolarization of the plasma membrane of nerve terminals in the control specimen was shown to significantly increase the MEPC frequency (quantal transmitter release) and exocytotic rate (FM 1-43 unloading from the synaptic vesicles preliminarily stained with the dye), which was caused by a rise in the intracellular Ca 2+ concentration due to opening of voltage-gated Ca channels. A slight increase in the MEPC frequency and in the rate of synaptic vesicle exocytosis was observed under depolarization in case of blockade of Ca channels and chelating of intracellular Ca 2+ ions (cooperative action of Cd 2+ and EGTA-AM). The processes of synaptic vesicle endocytosis (FM 1-43 loading) were proportional to the number of synaptic vesicles that had undergone exocytosis both in the control and in case of cooperative action of Cd 2+ and EGTA-AM. A hypothesis has been put forward that Ca-independent synaptic vesicle exo- and endocytosis that can be induced directly by depolarization of the membrane exists in the frog motor terminal in addition to the conventional Ca-dependent process.


Depolarization-Induced Calcium-Independent Synaptic Vesicle Exo- and Endocytosis at Frog Motor Nerve Terminals

M. M. Abdrakhmanov

Kazan State Medical University

Author for correspondence.
Email: fysio@rambler.ru

Russian Federation

A. M. Petrov

Kazan State Medical University

Email: fysio@rambler.ru

Russian Federation

P. N. Grigoryev

Kazan State Medical University

Email: fysio@rambler.ru

Russian Federation

A. L. Zefirov

Kazan State Medical University

Email: fysio@rambler.ru

Russian Federation

  1. Zefirov A.L., Petrov A.M. // Synaptic vesicle and mechanism of neurotransmitter realease (exo-endocytosis vesicular cycle). Kazan: Art-café, 2010. 356p. 2010
  2. Heuser J.E., Reese T.S. // J. Cell Biol. 1973, V.57, №2, P.315-344
  3. Zefirov A.L., Abdrakhmanov M.M., Grigor`ev P.N. // Ross. Fiziol. Zh. Im. I.M. Sechenova. 2005, V.91, №7, P.821-831
  4. Ceccarelli B., Hurlbut W.P. // J. Cell Biol. 1980, V.87, №1, P.297-303
  5. Ramaswami M., Krishnan K.S., Kelly R.B. // Neuron. 1994, V.13, №2, P.363-375
  6. Pang I.O., Z.P. I.O., Sudhof T.C. // Curr. Opin. Cell Biol. 2010, V.22, P.496-505
  7. Xu J., Pang Z.P., Shin O.H., Südhof T.C. // Nat. Neurosci. 2009, V.12, №6, P.759-766
  8. Groffen A.J., Martens S., Díez-Arazola R., Cornelisse L.N., Lozovaya N., de Jong A.P., Goriounova N.A., Habets R.L., Takai Y., Borst J.G. // Science. 2010, V.327, P.1614-1618
  9. Cousin M.A., Robinson P.J. // Trends Neurosci. 2001, V.24, P.659-665
  10. Zefirov A.L., Abdrakhmanov M.M., Mukhamedyarov M.A., Grigoryev P.N. // Neuroscience. 2006, V.143, №4, P.905-910
  11. Balaji J., Armbruster M., Ryan T.A. // J. Neurosci. 2008, V.28, P.6742-6749
  12. Wu X.S., McNeil B.D., Xu J., Fan J., Xue L., Melicoff E., Adachi R., Bai L., Wu L.G. // Nat. Neurosci. 2009, V.12, P.1003-1010
  13. Yao J., Kwon S.E., Gaffaney J.D., Dunning F.M., Chapman E.R. // Nat. Neurosci. 2011, V.15, P.243-249
  14. Parnas H., Segel L., Dudel J., Parnas I. // Trends Neurosci. 2000, V.23, №2, P.60-68
  15. Silinsky E.M., Watanabe M., Redman R.S., Qiu R., Hirsh J.K., Hunt J.M., Solsona C.S., Alford S., MacDonald R.C. // J. Physiol. 1995, V.1, №482, P.511-520
  16. Zhang C., Zhou Z. // Nat. Neurosci. 2002, V.5, №5, P.425-430
  17. Zhang C., Xiong W., Zheng H., Wang L., Lu B., Zhou Z. // Neuron. 2004, V.42, №2, P.225-236
  18. Betz W.J., Bewick G.S., Ridge R.M. // Neuron. 1992, V.9, №5, P.805-813
  19. Petrov A.M., Naumenko N.V., Uzinskaya K.V., Giniatullin A.R., Urazaev A.K., Zefirov A.L. // Neuroscience. 2011, V.186, P.1-12
  20. Zefirov A.L., Grigor’ev P.N., Petrov A.M., Minlebaev M.G., Sitdikova G.F. // Tsitologiia. 2003, V.45, №12, P.1163-1171
  21. Ramirez D.M., Kavalali E.T. // Curr. Opin. Neurobiol. 2011, V.21, №2, P.275-282
  22. Zefirov A.L., Abdrakhmanov M.M., Grigor’ev P.N., Petrov A.M. // Tsitologiia. 2006, V.48, №1, P.34-41
  23. Angleson J.K., Betz W.J. // J. Neurophysiol. 2001, V.85, №1, P.287-294
  24. Zefirov A.L., Mukhamedzianov R.D., Minlebaev M.G., Cheranov S.Iu., Abdrakhmanov M.M., Grigor’ev P.N. // Ross. Fiziol. Zh. Im. I.M. Sechenova. 2002, V.88, P.191-204
  25. Zheng N., Raman I.M. // J. Neurosci. 2009, V.29, №31, P.9826-9838
  26. Nurullin L.F., Tsentsevitsky A.N., Malomouzh A.I., Nikolsky E.E. // Dokl. Biol. Sci. 2013, V.449, №3, P.360-363
  27. Van der Kloot W., Molgó J. // Physiol. Rev. 1994, V.74, №4, P.899-991
  28. Vyleta N.P., Smith S.M. // J. Neurosci. 2011, V.31, №12, P.4593-4606
  29. Braga M.F., Rowan E.G. // Gen. Pharmacol. 1994, V.25, №8, P.1729-1739
  30. Zefirov A.L., Grigor’ev P.N. // Bull. Exp. Biol. Med. 2008, V.146, №12, P.608-612
  31. Chen X., Zhang X., Jia C., Xu J., Gao H., Zhang G., Du X., Zhang H. // J. Biol. Chem. 2011, V.286, №46, P.39760-39767
  32. Dekel N., Priest M.F., Parnas H., Parnas I., Bezanilla F. // Proc. Natl. Acad. Sci. USA. 2012, V.109, №1, P.285-290
  33. Murata Y., Okamura Y. // J. Physiol. 2007, V.583, P.875-989
  34. Zheng H., Fan J., Xiong W., Zhang C., Wang X., Liu T., Liu H., Sun L., Wang Y., Zheng L. // Biophys. J. 2009, V.96, P.2449-2456

Views

Abstract - 132

PDF (English) - 66

PDF (Russian) - 65

Cited-By


PlumX

Dimensions

Refbacks

  • There are currently no refbacks.

Copyright (c) 2013 Abdrakhmanov M.M., Petrov A.M., Grigoryev P.N., Zefirov A.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies