Lipid-Protein Nanodiscs Offer New Perspectives for Structural and Functional Studies of Water-Soluble Membrane-Active Peptides

Cover Page
  • Authors: Shenkarev Z.O.1, Lyukmanova E.N.1, Paramonov A.S.1, Panteleev P.V.1, Balandin S.V.1, Shulepko M.A.1,2, Mineev K.S.1, Ovchinnikova T.V.1,3, Kirpichnikov M.P.1,2, Arseniev A.S.1,3
  • Affiliations:
    1. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
    2. Lomonosov Moscow State University
    3. Moscow Institute of Physics and Technology (State University)
  • Issue: Vol 6, No 2 (2014)
  • Pages: 84-94
  • Section: Research Articles
  • URL: http://actanaturae.ru/2075-8251/article/view/10555
  • DOI: https://doi.org/10.32607/20758251-2014-6-2-84-94
  • Cite item

Abstract


Lipid-protein nanodiscs (LPNs) are nanoscaled fragments of a lipid bilayer stabilized in solution by the apolipoprotein or a special membrane scaffold protein (MSP). In this work, the applicability of LPN-based membrane mimetics in the investigation of water-soluble membrane-active peptides was studied. It was shown that a pore-forming antimicrobial peptide arenicin-2 from marine lugworm (charge of +6) disintegrates LPNs containing both zwitterionic phosphatidylcholine (PC) and anionic phosphatidylglycerol (PG) lipids. In contrast, the spider toxin VSTx1 (charge of +3), a modifier of Kv channel gating, effectively binds to the LPNs containing anionic lipids (POPC/DOPG, 3 : 1) and does not cause their disruption. VSTx1 has a lower affinity to LPNs containing zwitterionic lipids (POPC), and it weakly interacts with the protein component of nanodiscs, MSP (charge of -6). The neurotoxin II (NTII, charge of +4) from cobra venom, an inhibitor of the nicotinic acetylcholine receptor, shows a comparatively low affinity to LPNs containing anionic lipids (POPC/DOPG, 3 : 1 or POPC/DOPS, 4 : 1), and it does not bind to LPNs/POPC. The obtained data show that NTII interacts with the LPN/POPC/DOPS surface in several orientations, and that the exchange process among complexes with different topologies proceeds fast on the NMR timescale. Only one of the possible NTII orientations allows for the previously proposed specific interaction between the toxin and the polar head group of phosphatidylserine from the receptor environment (Lesovoy et al., Biophys. J. 2009. V. 97. № 7. P. 2089-2097). These results indicate that LPNs can be used in structural and functional studies of water-soluble membrane-active peptides (probably except pore-forming ones) and in studies of the molecular mechanisms of peptide-membrane interaction.


Z. O. Shenkarev

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: zakhar-shenkarev@yandex.ru

Russian Federation

E. N. Lyukmanova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: zakhar-shenkarev@yandex.ru

Russian Federation

A. S. Paramonov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: zakhar-shenkarev@yandex.ru

Russian Federation

P. V. Panteleev

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: zakhar-shenkarev@yandex.ru

Russian Federation

S. V. Balandin

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: zakhar-shenkarev@yandex.ru

Russian Federation

M. A. Shulepko

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Lomonosov Moscow State University

Email: zakhar-shenkarev@yandex.ru

Russian Federation

K. S. Mineev

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: zakhar-shenkarev@yandex.ru

Russian Federation

T. V. Ovchinnikova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Email: zakhar-shenkarev@yandex.ru

Russian Federation

M. P. Kirpichnikov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Lomonosov Moscow State University

Email: zakhar-shenkarev@yandex.ru

Russian Federation

A. S. Arseniev

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Email: zakhar-shenkarev@yandex.ru

Russian Federation

  1. sample[1] Zasloff M. // Nature 2002, V.415, №6870, P.389-395
  2. Thomas L., Scheidt H.A., Bettio A., Beck-Sickinger A.G., Huster D., Zschörnig O. // Eur. Biophys. J. 2009, V.38, №5, P.663-677
  3. Lee S.Y., MacKinnon R. // Nature 2004, V.430, №6996, P.232-235
  4. Mäler L. // Mol. Membr. Biol. 2012, V.29, №5, P.155-176
  5. Oxenoid K., Chou J.J. // Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2013.03.010. 2013
  6. Chou J.J., Kaufman J.D., Stahl S.J., Wingfield P.T., Bax A. // J. Am. Chem. Soc. 2002, V.124, №11, P.2450-2451
  7. Warschawski D.E., Arnold A.A., Beaugrand M., Gravel A., Chartrand E., Marcotte I. // Biochim. Biophys. Acta. 2011, V.1808, №8, P.1957-1974
  8. Bayburt T.H., Sligar S.G. // FEBS Lett. 2010, V.584, №9, P.1721-1727
  9. Denisov I.G., McLean M.A., Shaw A.W., Grinkova Y.V., Sligar S.G. // J Phys Chem B. 2005, V.109, №32, P.15580-15588
  10. Frauenfeld J., Gumbart J., van der Sluis E.O., Funes S., Gartmann M., Beatrix B., Mielke T., Berninghausen O., Becker T., Schulten K. // Nat Struct Mol Biol. 2011, V.18, №5, P.614-621
  11. Katayama H., Wang J., Tama F., Chollet L., Gogol E.P., Collier R.J., Fisher M.T. // Proc.Natl.Acad.Sci U.S.A. 2010, V.107, №8, P.3453-3457
  12. Lyukmanova E.N., Shenkarev Z.O., Paramonov A.S., Sobol A.G., Ovchinnikova T.V., Chupin V.V., Kirpichnikov M.P., Blommers M.J., Arseniev A.S. // J.Am.Chem.Soc. 2008, V.130, №7, P.2140-2141
  13. Shenkarev Z.O., Lyukmanova E.N., Paramonov A.S., Shingarova L.N., Chupin V.V., Kirpichnikov M.P., Blommers M.J.J., Arseniev A.S. // J. Am. Chem. Soc. 2010, V.132, №16, P.5628-5629
  14. Hagn F., Etzkorn M., Raschle T., Wagner G. // J. Am. Chem. Soc. 2013, V.135, №5, P.1919-1925
  15. Shenkarev Z.O., Paramonov A.S., Lyukmanova E.N., Gizatullina A.K., Zhuravleva A.V., Tagaev A.A., Yakimenko Z.A., Telezhinskaya I.N., Kirpichnikov M.P., Ovchinnikova T.V. // Chem. Biodivers. 2013, V.10, №5, P.838-863
  16. Schuler M.A., Denisov I.G., Sligar S.G. // Methods Mol. Biol. 2013, V.974, P.415-433
  17. Kyte J., Doolittle R.F. // J. Mol. Biol. 1982, V.157, №1, P.105-132
  18. Shenkarev Z.O., Balandin S.V., Trunov K.I., Paramonov A.S., Sukhanov S.V., Barsukov L.I., Arseniev A.S., Ovchinnikova T.V. // Biochemistry. 2011, V.50, №28, P.6255-6265
  19. Lesovoy D.M., Bocharov E.V., Lyukmanova E.N., Kosinsky Y.A., Shulepko M.A., Dolgikh D.A., Kirpichnikov M.P., Efremov R.G., Arseniev A.S. // Biophys. J. 2009, V.97, №7, P.2089-2097
  20. Shenkarev Z.O., Lyukmanova E.N., Solozhenkin O.I., Gagnidze I.E., Nekrasova O.V., Chupin V.V., Tagaev A.A., Yakimenko Z.A., Ovchinnikova T.V., Kirpichnikov M.P. // Biochemistry (Mosc.). 2009, V.74, №7, P.756-765
  21. Ovchinnikova T.V., Shenkarev Z.O., Nadezhdin K.D., Balandin S.V., Zhmak M.N., Kudelina I.A., Finkina E.I., Kokryakov V.N., Arseniev A.S. // Biochem. Biophys. Res. Commun. 2007, V.360, №1, P.156-162
  22. Lyukmanova E.N., Shenkarev Z.O., Schulga A.A., Ermolyuk Y.S., Mordvintsev D.Y., Utkin Y.N., Shoulepko M.A., Hogg R.C., Bertrand D., Dolgikh D.A. // J. Biol. Chem. 2007, V.282, №34, P.24784-24791
  23. Chill J.H., Louis J.M., Baber J.L., Bax A. // J.Biomol.NMR. 2006, V.36, №2, P.123-136
  24. Andrä J., Jakovkin I., Grötzinger J., Hecht O., Krasnosdembskaya A.D., Goldmann T., Gutsmann T., Leippe M. // Biochem. J. 2008, V.410, №1, P.113-122
  25. Nagle J.F., Tristram-Nagle S. // Biochim. Biophys. Acta. 2000, V.1469, №3, P.159-195
  26. Lyukmanova E.N., Shenkarev Z.O., Khabibullina N.F., Kopeina G.S., Shulepko M.A., Paramonov A.S., Mineev K.S., Tikhonov R.V., Shingarova L.N., Petrovskaya L.E. // Biochim. Biophys. Acta. 2012, V.1818, №3, P.349-358
  27. Clay M.A., Pyle D.H., Rye K.-A., Barter P.J. // J. Biol. Chem. 2000, V.275, №12, P.9019-9025
  28. Jayaraman S., Gantz D.L., Gursky O. // Biophys. J. 2005, V.88, №4, P.2907-2918
  29. Huang H.W. // Biochim. Biophys. Acta. 2006, V.1758, №9, P.1292-1302
  30. Sheng J.R., Grimme S., Bhattacharya P., Stowell M.H.B., Artinger M., Prabahakar B.S., Meriggioli M.N. // Exp. Neurol. 2010, V.225, №2, P.320-327
  31. Jung H.J., Lee J.Y., Kim S.H., Eu Y.J., Shin S.Y., Milescu M., Swartz K.J., Kim J.I. // Biochemistry. 2005, V.44, №16, P.6015-6023
  32. Schmidt D., MacKinnon R. // Proc.Natl.Acad.Sci U.S.A. 2008, V.105, №49, P.19276-19281
  33. Shenkarev Z.O., Lyukmanova E.N., Butenko I.O., Petrovskaya L.E., Paramonov A.S., Shulepko M.A., Nekrasova O.V., Kirpichnikov M.P., Arseniev A.S. // Biochim. Biophys. Acta. 2013, V.1828, №2, P.776-784
  34. Nakano M., Fukuda M., Kudo T., Miyazaki M., Wada Y., Matsuzaki N., Endo H., Handa T. // J. Am. Chem. Soc. 2009, V.131, №23, P.8308-8312
  35. Golovanov A.P., Lomize A.L., Arseniev A.S., Utkin Y.N., Tsetlin V.I. // Eur. J. Biochem. 1993, V.213, №3, P.1213-1223
  36. Teixeira-Clerc F., Ménez A., Kessler P. // J. Biol. Chem. 2002, V.277, №28, P.25741-25747
  37. Mazhab-Jafari M.T., Marshall C.B., Stathopulos P.B., Kobashigawa Y., Stambolic V., Kay L.E., Inagaki F., Ikura M. // J. Am. Chem. Soc. 2013, V.135, №9, P.3367-3370

Views

Abstract - 208

PDF (English) - 77

PDF (Russian) - 92

Cited-By


PlumX

Dimensions

Refbacks

  • There are currently no refbacks.

Copyright (c) 2014 Shenkarev Z.O., Lyukmanova E.N., Paramonov A.S., Panteleev P.V., Balandin S.V., Shulepko M.A., Mineev K.S., Ovchinnikova T.V., Kirpichnikov M.P., Arseniev A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies