The Use of Atomic Force Microscopy for 3D Analysis of Nucleic Acid Hybridization on Microarrays

Cover Page

Cite item

Abstract

Oligonucleotide microarrays are considered today to be one of the most efficient methods of gene diagnostics. The capability of atomic force microscopy (AFM) to characterize the three-dimensional morphology of single molecules on a surface allows one to use it as an effective tool for the 3D analysis of a microarray for the detection of nucleic acids. The high resolution of AFM offers ways to decrease the detection threshold of target DNA and increase the signal-to-noise ratio. In this work, we suggest an approach to the evaluation of the results of hybridization of gold nanoparticle-labeled nucleic acids on silicon microarrays based on an AFM analysis of the surface both in air and in liquid which takes into account of their three-dimensional structure. We suggest a quantitative measure of the hybridization results which is based on the fraction of the surface area occupied by the nanoparticles.

About the authors

E. V. Dubrovin

Lomonosov Moscow State University

Author for correspondence.
Email: dubrovin@polly.phys.msu.ru
Russian Federation

G. V. Presnova

Lomonosov Moscow State University

Email: dubrovin@polly.phys.msu.ru
Russian Federation

M. Yu. Rubtsova

Lomonosov Moscow State University

Email: dubrovin@polly.phys.msu.ru
Russian Federation

A. M. Egorov

Lomonosov Moscow State University; Russian Medical Academy of Postgraduate Education

Email: dubrovin@polly.phys.msu.ru
Russian Federation

V. G Grigorenko

Lomonosov Moscow State University

Email: dubrovin@polly.phys.msu.ru
Russian Federation

I. V. Yaminsky

Lomonosov Moscow State University

Email: dubrovin@polly.phys.msu.ru
Russian Federation

References

  1. Schena M., Shalon D., Davis R.W., Brown P.O. // Science. 1995, V.270, P.467-470
  2. Yoo S.M., Choi J.H., Lee S.Y., Yoo N.C. // J. Microbiol. Biotechnol. 2009, V.19, №7, P.635-646
  3. Behr M.A., Wilson M.A., Gill W.P., Salamon H., Schoolnik G.K., Rane S., Small P.M. // Science. 1999, V.284, P.1520-1523
  4. Nuwaysir E.F., Bittner M., Trent J., Barnett J.C., Afshari C.A. // Mol. Carcinog. 1999, V.24, P.153-159
  5. Iida K., Nishimura I. // Crit. Rev. Oral Biol. Med. 2002, V.13, P.35-50
  6. Sassolas A., Leca-Bouvier B.D., Blum L.J. // Chem. Rev. 2008, V.108, P.109-139
  7. Herwig R., Aanstad P., Clark M., Lehrach H. // Nucleic Acids Research 201, V.29, P.e117
  8. Ryan O., Smyth M.R., Fagain C.O. // Essays Biochem. 1994, V.28, P.129-146
  9. Lytton-Jean A.K., Han M.S., Mirkin C.A. // Anal. Chem. 2007, V.79, P.6037-6041
  10. Liao J.C., Mastali M., Gau V., Suchard M.A., Møller A.K., Bruckner D.A., Babbitt J.T., Li Y., Gornbein J., Landaw E.M. // J. Clin. Microbiol. 2006, V.44, P.561-570
  11. Malic L., Cui B., Veres T., Tabrizian M. // Opt. Lett. 2007, V.32, P.3092-3094
  12. Hering K.K., Moller R., Fritzsche W., Popp J. // ChemPhysChem. 2008, V.9, P.867-872
  13. Kim H., Takei H., Yasuda K. // Sens. Actuators. B. 2010, V.144, P.6-10
  14. Adamcik J., Klinov D.V., Witz G., Sekatskii S.K., Dietler G. // FEBS Lett. 2006, V.580, P.5671-5675
  15. Dubrovin E.V., Staritsyn S.N., Yakovenko S.A., Yaminsky I.V. // Biomacromolecules. 2007, V.8, P.2258-2261
  16. Dubrovin E.V., Gerritsen J.W., Zivkovic J., Yaminsky I.V., Speller S. // Colloids Surf. B. 2010, V.76, P.63-69
  17. Dubrovin E.V., Fedyukina G.N., Kraevsky S.V., Ignatyuk T.E., Yaminsky I.V., Ignatov S.G. // Open Microbiol. J. 2012, V.6, P.22-28
  18. Dubrovin E.V., Popova A.V., Kraevskiy S.V., Ignatov S.G., Ignatyuk T.E., Yaminsky I.V., Volozhantsev N.V. // PLoS One. 2012, V.7, №10, P.e47348
  19. Dupres V., Verbelen C., Dufrêne Y.F. // Biomaterials. 2007, V.28, P.2393-2402
  20. Oh S.J., Cho S.J., Kim C.O., Park J.W. // Langmuir. 2002, V.18, P.1764-1769
  21. Legay G., Finot E., Meunier-Prest R., Cherkaoui-Malki M., Latruffe N., Dereux A. // Biosens. Bioelectron. 2005, V.21, P.627-636
  22. Lenigk R., Carles M., Ip N.Y., Sucher N.J. // Langmuir. 2001, V.17, P.2497-2501
  23. Festag G., Steinbruck A., Wolff A., Csaki A., Moller R., Fritzsche W. // J. Fluoresc. 2005, V.15, P.161-170
  24. Han W.H., Liao J.M., Chen K.L., Wu S.M., Chiang Y. W., Lo S.T., Chen C.L., Chiang C.M. // Anal. Chem. 2010, V.82, P.2395-2400
  25. Cook M.A., Chan C.K., Jorgensen P., Ketela T., So D., Tyers M., Ho C.Y. // PLoS One. 2008, V.3, P.e154
  26. Lavalley V., Chaudouët P., Stambouli V. // Surf. Sci. 2007, V.601, P.5424-5432
  27. Bush K. // Ann. N.Y. Acad. Sci. 2013, V.1277, P.84-90
  28. Rubtsova M.Yu., Ulyashova M.M., Bachmann T.T., Schmid R.D., Egorov A.M. // Biochemistry (Mosc). 2010, V.75, P.1628-1649
  29. Frens G. // Nat. Phys. Sci. 1973, V.241, P.20-22
  30. Rubtsova M.Yu., Ulyashova M.M., Edelstein M.V., Egorov A.M. // Biosens. Bioelectron. 2010, V.26, №4, P.1252-1260
  31. Lamture J.B., Beattie K.L., Burke B.E., Eggers M.D., Ehrlich D.J., Fowler R., Hollis M.A., Kosicki B.B., Reich R.K., Smith S.R. // Nucleic Acids Research 1994, V.22, P.2121-2125

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Dubrovin E.V., Presnova G.V., Rubtsova M.Y., Egorov A.M., Grigorenko V.G., Yaminsky I.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies